
Improving the Scalability and Security of Execution Environments for
Auto-Graders in the Context of MOOCs

Sebastian Serth, Daniel Köhler, Leonard Marschke, Felix Auringer, Konrad Hanff,
Jan-Eric Hellenberg, Tobias Kantusch, Maximilan Paß, Christoph Meinel

Hasso Plattner Institute, University of Potsdam, Germany

Programming Education with MOOCs

MOOCs

Videos

Quizzes

Programming
Exercises

> 175.000 Enrollments
in Programming MOOCs

(Staubitz et al. 2016)

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

2

CodeOcean
Code Execution and Grading in the Browser

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

3
Run Score

CodeOcean
Interactive Elements and Detailed Score Output

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

Chart 4

CodeOcean
Current System Architecture

DockerContainerPool

PostgreSQL

Web-based
Auto-Grader
CodeOcean

Docker
Containers

manages

requests
container

uses

uses
Shared
Folder

executes submissions / test cases

mounted fills

communicates via WebSocket

■ Architectural issues with the shared folder:

□ Difficult horizontal scaling

□ Increased attack surface

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

5

Requirements Analysis
Approach

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

6

■ User-centered Design Thinking approach:
(Meinel et al. 2016)

1. Interviews with different stakeholder representatives

a) Learners

b) Teachers

c) Administrators

2. Derive personas to visualize user needs and their pain points

3. Decide on a subset of features to address

4. Evaluate technical solutions for these personas

■ Analysis of past executions on CodeOcean since 2015

Related Work
Security Considerations

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

7

Dynamic code analysis

■ Code under investigation is executed

□ Security implications

– Language-specific
using the Java Security Manager
(Strickroth 2019)

– Container-based
using Docker
(Breitner et al. 2016)

Static code analysis

■ Code inspection without executing
the code under investigation

àOther scalability and security
considerations

Assessing code submissions
(Garmann 2013)

Requirements Analysis
Past Performance

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

8

Requirements Analysis
Past Performance

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

9

Identified Requirements

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

10

1. Interactivity

□ Synchronous channel between the execution and the users’ web browser

□ Real-time code executions

2. Scalability

□ Current system handles up to 120 execution requests per second

□ Mean execution time less than 10 seconds per execution

3. Flexibility

□ Compatibility to containerd ecosystem (e.g., through a Dockerfile)

Identified Requirements

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

11

1. Interactivity

2. Scalability

3. Flexibility

■ Limit resources

□ CPU: Wall clock time, CPU shares

□ RAM

□ Network access

■ Isolation between different executions

■ Desired: Network orchestration with multiple nodes

Evaluation
Criteria

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

12

■ Features

□ Attach to stdout, stderr, stdin

□ Allow superuser access within the execution

■ Metrics

□ Startup time

□ RAM / CPU usage

■ Technical details

□ Maintenance and management

□ Isolation technologies and security implications

Related Work
Execution Environments

Host Operating System

Hypervisor (type 2)

Guest OS Guest OS

Alice’s
Program

Bob’s
Program

Virtual Machines

Host Operating System

Binaries/
Libraries

Binaries/
Libraries

Alice’s
Program

Bob’s
Program

Containers

Host Operating System

Web Browser
(Sharrock et al. 2018)

Web Server + Libraries

Alice’s PC Bob’s PC

Alice’s
Browser

Bob’s
Browser

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

13

Execution Environments

Excluded by the requirements Approved for performance
evaluation

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

14

Execution Environments
Startup time

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

Chart 15

BP CM1
2021-07-23

Execution Environments
Memory usage

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

Chart 16

BP CM1
2021-07-23

CodeOcean

PostgreSQL
Executor

Requirement Evaluation
Scalability

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

17

CodeOcean

PostgreSQL
Executor

Requirement Evaluation
Scalability

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

18

Execution
Orchestrator

Nodes

Execution Orchestrators

Excluded by the requirements Approved for performance
evaluation

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

19

Execution Orchestrators
Nomad vs Kubernetes

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

20

Evaluation
Comparison

Environments Orchestrators

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

21

Requirement Evaluation
Flexibility

22

Evaluation
Comparison

Environments Orchestrators

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

23

Evaluation
Prewarming

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

24

Evaluation
Container Reusing

Prewarming Pool Used Runners Prewarmed Runners

error timeout

each
execution

User starts
executing code

Mapping in CodeOcean

Old New

CodeOcean
New System Architecture

Web-based
Auto-Grader
CodeOcean

PostgreSQL

uses

Executor
Middleware

Nomad
Orchestrator

Node 1

Docker
Containers

Node n

...

manages

manages

posts files and
exeuction requests

relies on

manages:
- jobs / execution environments
- pre-warmed containers
- time and resource constraints

communicates
via WebSocket

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

26

Future Work

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

27

■ Integration of hardware resources

□ GPU for machine learning exercises (for teaching purposes at HPI)

□ Raspberry PI for embedded smart home courses on openHPI

■ Networking scenarios

□ Multi-node setup and VPN access

■ Long lasting executions

□ Debugging

■ Pre-warming strategies and Function-as-a-Service (FaaS)

■ Comparison of programming languages and their security concepts
for system components (especially the executor middleware)

Conclusion

Serth et al.

Improving the
Scalability and
Security of Execution
Environments for
Auto-Graders in the
Context of MOOCs

28

■ Identification of three main requirements:

■ Evaluation of several containerization and orchestration technologies:

■ Executor middleware abstracts from

□ container management and pre-warming

□ specific interface of the orchestrator

à Result: Scalable and more secure architecture for execution environments

Interactivity Scalability Flexibility

Docker

Firecracker
Kata Containers Nomad Kubernetes

Improving the Scalability and Security of Execution Environments for
Auto-Graders in the Context of MOOCs

Sebastian Serth, Daniel Köhler, Leonard Marschke, Felix Auringer, Konrad Hanff,
Jan-Eric Hellenberg, Tobias Kantusch, Maximilan Paß, Christoph Meinel

Hasso Plattner Institute, University of Potsdam, Germany

