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Programming Education with MOOCs

MOOCs

Videos

Quizzes

Programming
Exercises

> 175.000 Enrollments
in Programming MOOCs

(Staubitz et al. 2016)
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CodeOcean
Code Execution and Grading in the Browser
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CodeOcean
Interactive Elements and Detailed Score Output
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CodeOcean
Current System Architecture

DockerContainerPool

PostgreSQL

Web-based 
Auto-Grader
CodeOcean

Docker 
Containers

manages

requests
container

uses

uses
Shared 
Folder

executes submissions / test cases

mounted fills

communicates via WebSocket

■ Architectural issues with the shared folder:

□ Difficult horizontal scaling

□ Increased attack surface
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Requirements Analysis
Approach
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■ User-centered Design Thinking approach:
(Meinel et al. 2016)

1. Interviews with different stakeholder representatives

a) Learners

b) Teachers

c) Administrators

2. Derive personas to visualize user needs and their pain points

3. Decide on a subset of features to address

4. Evaluate technical solutions for these personas

■ Analysis of past executions on CodeOcean since 2015



Related Work
Security Considerations
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Dynamic code analysis

■ Code under investigation is executed

□ Security implications

– Language-specific
using the Java Security Manager
(Strickroth 2019)

– Container-based
using Docker
(Breitner et al. 2016)

Static code analysis

■ Code inspection without executing 
the code under investigation

àOther scalability and security 
considerations

Assessing code submissions
(Garmann 2013)



Requirements Analysis
Past Performance
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Requirements Analysis
Past Performance
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Identified Requirements
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1. Interactivity

□ Synchronous channel between the execution and the users’ web browser

□ Real-time code executions

2. Scalability

□ Current system handles up to 120 execution requests per second

□ Mean execution time less than 10 seconds per execution

3. Flexibility

□ Compatibility to containerd ecosystem (e.g., through a Dockerfile)



Identified Requirements
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1. Interactivity

2. Scalability

3. Flexibility

■ Limit resources

□ CPU: Wall clock time, CPU shares

□ RAM

□ Network access

■ Isolation between different executions

■ Desired: Network orchestration with multiple nodes



Evaluation
Criteria

Serth et al.    

Improving the 
Scalability and 
Security of Execution 
Environments for 
Auto-Graders in the 
Context of MOOCs

12

■ Features

□ Attach to stdout, stderr, stdin

□ Allow superuser access within the execution

■ Metrics

□ Startup time

□ RAM / CPU usage

■ Technical details

□ Maintenance and management

□ Isolation technologies and security implications



Related Work
Execution Environments

Host Operating System

Hypervisor (type 2)

Guest OS Guest OS

Alice’s 
Program

Bob’s
Program

Virtual Machines

Host Operating System

Binaries/
Libraries

Binaries/
Libraries

Alice’s
Program

Bob’s
Program

Containers

Host Operating System

Web Browser
(Sharrock et al. 2018)

Web Server + Libraries

Alice’s PC Bob’s PC

Alice’s 
Browser

Bob’s
Browser
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Execution Environments

Excluded by the requirements Approved for performance 
evaluation
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Execution Environments 
Startup time
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Execution Environments 
Memory usage
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CodeOcean

PostgreSQL
Executor

Requirement Evaluation
Scalability
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CodeOcean

PostgreSQL
Executor

Requirement Evaluation
Scalability
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Execution 
Orchestrator

Nodes



Execution Orchestrators

Excluded by the requirements Approved for performance 
evaluation
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Execution Orchestrators
Nomad vs Kubernetes
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Evaluation
Comparison

Environments Orchestrators
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Requirement Evaluation
Flexibility
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Evaluation
Comparison

Environments Orchestrators
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Evaluation
Prewarming
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Evaluation
Container Reusing

Prewarming Pool Used Runners Prewarmed Runners

error timeout

each 
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User starts 
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CodeOcean
New System Architecture

Web-based
Auto-Grader
CodeOcean

PostgreSQL
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Executor 
Middleware
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Docker 
Containers

Node n

...

manages

manages

posts files and 
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- pre-warmed containers
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Future Work

Serth et al.    

Improving the 
Scalability and 
Security of Execution 
Environments for 
Auto-Graders in the 
Context of MOOCs

27

■ Integration of hardware resources

□ GPU for machine learning exercises (for teaching purposes at HPI)

□ Raspberry PI for embedded smart home courses on openHPI

■ Networking scenarios

□ Multi-node setup and VPN access

■ Long lasting executions

□ Debugging

■ Pre-warming strategies and Function-as-a-Service (FaaS)

■ Comparison of programming languages and their security concepts 
for system components (especially the executor middleware)



Conclusion
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■ Identification of three main requirements:

■ Evaluation of several containerization and orchestration technologies:

■ Executor middleware abstracts from

□ container management and pre-warming

□ specific interface of the orchestrator

à Result: Scalable and more secure architecture for execution environments

Interactivity Scalability Flexibility

Docker

Firecracker
Kata Containers Nomad Kubernetes
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